Vol. 21, No. 2, pp. 191-197 (2017)

Open Access https://doi.org/10.7585/kjps.2017.21.2.191

ORIGINAL ARTICLES

Online ISSN 2287-2051 Print ISSN 1226-6183

농업용수 중 잔류성유기염소계 농약류의 잔류량과 수서생물 영향 평가

임성진 * 오영탁 * 김승용 * 노진호 · 최근형 · 류송희 · 김상수 * 박병준 *

농촌진흥청 국립농업과학원 화학물질안전과 '전북대학교 농과대학 생물환경화학과 2농촌진흥청 국립농업과학원 농자재평가과

Residues of Organochlorine Pesticides in Agricultural Waters and Its Risk Assessment of Aquatic Creature

Sung-Jin Lim[†], Young-Tak Oh[†], Seung-Yong Kim¹, Ji n-Ho Ro, Geun-Hyoung Choi, Song-Hee Ryu, Sang-Su Kim², and Byung-Jun Park*

Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea

¹Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, Republic of Korea ²Division of Agro-Materials Evaluation, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea

(Received on May 23, 2017. Revised on June 26, 2017. Accepted on June 28, 2017)

Abstract This study was conducted to investigate residual organochlorine pesticides (OCPs) in agricultural waters. Extraction and clean-up method were developed using the liquid-liquid extraction for OCPs in water. Limit of detection (LOD), recovery, and relative standard deviation (RSD) of OCPs and in agricultural waters ranged from 0.001-0.004 μg/L, 73.7-110.9%, and 0.9-4.2%, respectively. The residues of OCPs in agricultural water were analyzed by the developed method, and α -endosulfan, β -endosulfan, and endosulfan sulfate were detected at 0.11-0.18, 0.08-0.12, and 0.11-0.13 µg/L, respectively. The detection number of three compounds in agricultural water were 8 (9.1%), 10 (11.4%), and 20 (22.7%) among 88 samples, respectively. These results showed that endosulfans were detected in agricultural waters and the continuous monitoring of them will be conducted.

Key words Agricultural waters, Endosulfan, Monitoring, Persistent organic pollutants, Organochlorine pesticides

서 론

최근 국제적인 환경문제로서 지적되고 있는 잔류성유기오 염물질(POPs, persistent organic pollutants)은 독성, 생물농 축성, 잔류성 및 장거리 이동성을 가지는 물질로 생식작용, 성장 및 면역기능의 저하와 암을 유발하므로 이들의 생산과 사용을 금지ㆍ제한 하는 스톡홀름 협약이 2001년과 2004년 에 채택 · 발효되었다(Park et al., 2012; Lim et al., 2016a and 2016b). 우리나라도 2007년에 이를 비준하였고, POPs

를 '잔류성유기오염물질관리법'으로 관리하고 있다(Shin et al., 2010; Lim et al., 2016a and 2016b). 우리나라에서는 POPs 지정 물질 중 aldrin, endrin, dieldrin, toxaphene, heptachlor, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT), α-hexachlorocyclohexane (HCH), β-HCH, pentachlorobenzene (PCB) 및 endosulfan이 살충제로 등록되어 농업에 사용된 바 있다(Lim et al., 2016a, 2016b, and 2016c).

국내에 사용되었던 잔류성유기염소계 농약류(residual organochlorine pesticides)에 대한 잔류량 조사가 농산물품 질관리원, 국립농업과학원, 국립환경과학원, 대학을 중심으 로 농산물, 낙동강 수계, 충청지역 농업용수, 시설재배지 토

^{*}Corresponding author

E-mail: bjpark@korea.kr

[†] These authors contributed equally to this work.

양 및 작물을 대상으로 실시되었고, dieldrin, HCB, heptachlorepoxide 및 endosulfan 류(α-endosulfan, β-endosulfan 및 endosulfan sulfate)가 꾸준히 검출되고 있다(Park et al., 2012; Lee et al., 2015; Lim et al., 2016a, 2016b, and 2016c).

환경 중 잔류성유기염소계 농약류의 잔류량 조사에는 gas chromatography (GC)-electron capture detector (ECD), high resolution (HR) GC- HR mass spectroscopy (MS) 및 GC-ECD 분석 후 GC-MS로 확인하는 방법이 많이 사용되고 있다(Chen et al., 2005; Gonzalez et al., 2005; Mikes et al., 2009; Park et al., 2012; Lee et al., 2015; Lim et al., 2016a, 2016b, and 2016c). 따라서 본 연구에서는 농업용수로 사용되는 8도 88개 시ㆍ군의 농경지 인근 하천수를 대상으로 우리나라 농업용수중 국내에서 사용된 잔류성유기염소계 농약 19종(이성질체 포함)의 잔류량을 GC-µECD로 분석한 후 GC-MS로 확인하는 방법을 활용하여 이들의 오염실태를 파악하고, 수 생태계에 끼치는 영향을 평가하고자하였다.

재료 및 방법

시약 및 표준품

시험대상 국내 사용 잔류성유기염소계 농약(이성질체 포함) 표준품 aldrin, 2,4-dichlorodiphenyldichloroethane (DDD), 4,4-DDD, 2,4-dichlorodiphenyldichloroethylene (DDE), 4,4-DDE, 2,4-dichlor diphenyltrichlorethane (DDT), 4,4-DDT, dieldrin, endrin, α-endosulfan, β-endosulfan, endosulfansulfate, heptachlor, heptachlorepoxide, hexachlorobenzene (HCB), α-hexachlorocyclohexane (α-HCH), β-HCH, γ-HCH 및 δ-HCH 는 Dr. Ehrenstorfer GmbH (Ausburg, Germany)사에서 구입한 순도 97% 이상의 것을 사용하였다. 이들의 분석시 머무름 시간을 확인하여 표준용액의 농도 및 표준용액의 혼합조합을 만들어 사용하였다(Table 1). 물 시료 중 잔류성 유기염소계 농약 분석을 위한 전처리 과정에 사용된 acetonitrile과 dichloromethane은 Tedia (Ohio, USA)사로부

터 구입 · 사용하였다.

시료채취 및 시료조제

본 연구에서는 농경지 주변 하천의 농업용수를 조사대상으로 하였고, 강원도 등 제주도를 제외한 8도 88시・군 에서 88점의 농업용수를 채취하였다(Table 2). 채취한 시료는 실험실로 이동하여 4℃ 냉장 저장한 후 바로 전처리를 수행하였으며 용매로 추출한 시료는 분석 전까지 -20℃ 냉동고에보관 후 잔류농약 분석용 시료로 사용하였다(Lee et al., 2011).

분석법의 유효성 검증

농업용수 중 잔류성유기염소계 농약 잔류량 분석을 위한 분석법의 유효성은 Lim et al. (2016b)의 방법에 따라 검량선의 직선성, 회수율 시험, 검출한계(limits of detection, LOD) 및 상대표준편차(relative standard deviation, RSD)로 검증하였다. 검량선의 직선성은 시험대상 잔류성유기염소계 농약 성분을 2개의 group으로 나누어 1-5,000 μ g/L 수준에서 확인하였다(Lim et al. 2016a, 2016b, and 2016c). Group I은 α -HCH, β -HCH, γ -HCH, δ -HCH, α -endosulfan, β -endosulfan, endosulfan sulfate, endrin, 4,4-DDE 및 2,4-DDT 10개 성분, Group II는 aldrin, dieldrin, HCB, heptachlor, heptachlor epoxide, 2,4-DDD, 2,4-DDE, 4,4-DDD 및 4,4-DDT 9개 성분으로 나누고, Table 3의 조건에서 분석한 다음 각각의 성분에 대하여 검량선을 작성하여이들의 직선성을 확인하였다.

잔류성유기염소계 농약 19종 각 성분의 LOD는 S/N (signal to noise ratio) 비가 3.3이 되는 농도로 하여 다음의 식으로부터 산출하였다.

회수율 시험은 Group I과 Group II 각각의 혼합표준용액을 증류수에 10과 50 μg/L 수준으로 처리한 다음 Fig. 1의 방법에 따라 3반복으로 실시하였고, 각각의 성분 피크면적

Table 1. List of categorized residual organochlorine pesticides by their retention time

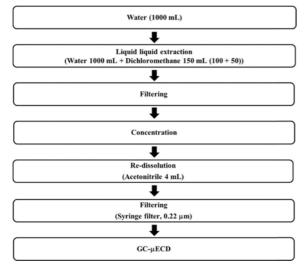

Group	Residual organochlorine pesticides (Retention time, min)
I (10)	α-HCH (25.5), β-HCH (28.5), γ-HCH (28.8), δ-HCH (31.6), α-Endosulfan (48.8), 4,4-DDE (52.6), Endrin (54.1), β-Endosulfan (55.2), 2,4-DDT (57.4), Endosulfan sulfate (60.2)
II (9)	HCB (26.1), Heptachlor (36.5), Aldrin (40.2), Heptachlorepoxide (45.4), 2,4-DDE (48.8), Dieldrin (51.8), 2,4-DDD (53.4), 4,4-DDD (57.3), 4,4-DDT (61.4)

Table 2. Sampling sites and numbers for monitoring of residual organochlorine pesticides

Region	Jeonnam	Jeonbuk	Gyeongnam	Gyeongbuk	Chungnam	Chungbuk	Gyeonggi	Kangwon	Total
Samples	16	8	13	14	10	9	7	11	88

Table 3. Analytical	l conditions (GC) for res	idual organochlorine pest	icides in agricultural water

Items	Analytical conditions					
Column	RTX-5MS (30 m × 250 μm, 0.25 μm, Restek, Pennsylvania, USA)					
Carrier gas	N_2 (1.5 mL/min)					
Injection volume	1 mL					
Injection mode	Splitless					
Inlet temperature	250°C					
Detector temperature	300°C					
	Stage	Rate (°C/min)	Temperature (°C)	Hold time (min)		
	Initial	-	60	2		
Oven temperature	Ramp 1	20	130	3		
	Ramp 2	1.5	210	4		
	Ramp 3	10	240	3		

Fig. 1. Flow chart for analysis of residual organochlorine pesticides in agricultural water.

을 각각의 검량선에 대입하여 산출한 농도와 첨가농도의 비로부터 회수율을 구하였다. 분석기기의 실험실 내 정밀성

시험은 5회 반복하여 실시하였으며 그 결과를 RSD로 나타 냈다.

농업용수 중 잔류성유기염소계 농약 분석

농업용수 중 잔류성유기염소계 농약의 잔류량 분석을 위한 시료 전처리는 액액분배법(liquid liquid extraction)을 사용하였다. 물 시료 1,000 mL를 칭량하여 분액여두로 옮기고 dichloromethane 150 (100+50) mL를 가한 다음 2회에 걸쳐 액액분배를 실시하고, dichloromethane 충을 sodium sulfate anhydrous를 사용하여 유기용매 중 수분을 제거하며 여과하였다. 이를 40°C에서 rotary evaporator (IKA RV 10 Digital, Staufen, Germany)를 사용하여 감압농축하고, acetonitrile 4 mL를 가하여 재 용해한 다음 syringe filter (0.22 μm)로 여과하여 GC-μECD를 사용하여 분석하였다(Fig. 1, Table 3). 또한 GC-μECD 분석에서 잔류성유기염소계 농약이 검출된 시료는 GC-MS (Agilent Technologies, Santa Clara, USA)를 사용하여 동일성분임을 재확인하였다(Table 4).

Table 4. Analytical conditions (GC-MS) for residual organochlorine pesticides in agricultural water

Items		Analyt	ical conditions					
Column	RTX-5MS (30 m × 0.2	RTX-5MS (30 m × 0.25 mm, 0.25 μm, Restek, Pennsylvania, USA)						
Carrier gas	N_2 (1.5 mL/min)							
Injection vol.	1 mL		Injection mode	Splitless				
Inlet temp.	250°C	Detector temp.		300°C				
	Stage	Rate (°C/min)	Temp. (°C)	Hold time (min)				
	Initial	-	60	2				
Oven temp.	Ramp 1	20	130	3				
	Ramp 2	1.5	210	4				
	Ramp 3	10	240	3				
	Scan range	20-500						
Mass spectrometry	Voltage	1900 V						
	Ion source temp.	230°C						

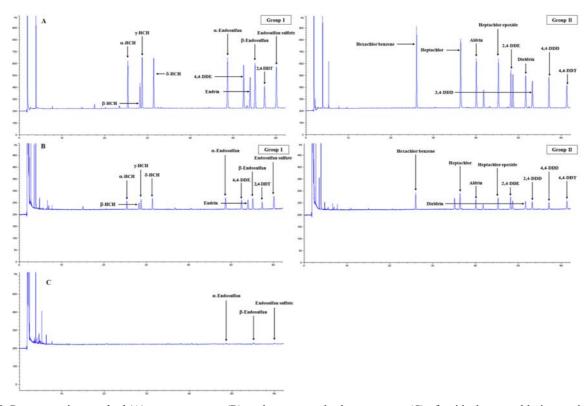


Fig. 2. Representative standard (A), water recovery (B), and water sample chromatogram (C) of residual organochlorine pesticides.

결과 및 고찰

분석법의 유효성

농업용수 중 잔류성유기염소계 농약의 잔류량 분석을 위한 적합성을 검증하기 위하여 이들의 GC (μECD)크로마토그램, 회수율 및 RSD를 Fig. 2와 Table 4에 나타냈다. 본 연구의 시험대상 잔류성유기염소계 농약의 머무름 시간은 Table 3의 기기분석 조건에서 Group I (α-HCH 25.5분, β-HCH 28.5분, γ-HCH 28.8분, δ-HCH 31.6분, α-endosulfan 48.8분, 4,4-DDE 52.6분, endrin 54.1분, β-endosulfan 55.2분, 2,4-DDT 57.4분, endosulfan sulfate 60.2분)의 경우 25.5-60.2분이었고, Group II (HCB 26.1분, heptachlor 36.5분, aldrin 40.2분, heptachlorepoxide 45.4분, 2,4-DDE 48.8분, dieldrin 51.8분, 2,4-DDD 53.4분, 4,4-DDD 57.3분, 4,4-DDT 61.4분)의 경우 26.1-61.4분 이었고(Fig. 2), 1-5,000μg/L의 농도범위에서 작성한 검량선의 직선성은 상관계수(R²)가 ≥0.9989으로 양호하였다.

농업용수 중 잔류성유기염소계 농약에 대한 회수율 시험은 10와 50 μg/L 수준에서 수행하였다. 농업용수 중 잔류성유기염소계 농약 19개 성분의 회수율, RSD 및 LOD는 각각 73.7-110.9%, 0.9-4.2% 및 0.001-0.004 μg/L 범위로 나타났다(Table 5). 이상의 농업용수 중 회수율과 RSD결과는 회수율 70-120%, RSD 20% 이하로 잔류분석법 기준에 적합하였다(RDA, 2011).

농업용수 중 잔류성유기염소계 농약의 잔류량

제주도를 제외한 우리나라 전국 8도 88개 시ㆍ군에서 채취한 농업용수(88점)에서는 조사대상 잔류성유기염소계 농약 중 endosulfan류(α -endosulfan, β -endosulfan 및 endosulfan sulfate) 성분만이 검출되었고(Table 5), GC (μ ECD) 크로마토그램 상에서 검출된 α -endosulfan, β -endosulfan 및 endosulfan sulfate 성분에 대해서는 GC-MS로 질량스펙트럼의 대표적 이온분자량(m/z) α -endosulfan 195, 239, 241, β -endosulfan 195, 237, 241 및 endosulfan sulfate 272, 274, 387을 확인하여 동일성분임을 확인하였다 (Fig. 3).

농업용수 중 α-endosulfan, β-endosulfan 및 endosulfan sulfate 검출범위와 검출수는 각각 0.11-0.18, 0.08-0.12 및 0.11-0.13 μg/L과 8, 10 및 20점 이었다(Table 6). 농업용수를 대상으로 한 본 연구에서 조사대상 잔류성유기염소계 농약류 중 endosulfan류 만이 검출된 결과는 endosulfan의 제조 및 사용 금지된 시기가 2011년으로 다른 성분에 비하여최근까지 사용되었기 때문으로 판단된다(Lim et al., 2016a, 2016b, and 2016c). 또한 본 연구에서는 물 시료 중 endosulfan의 검출빈도가 22.7%로 α-endosulfan 및 β-endosulfan의 검출빈도 9.1 및 11.4%에 비해 현저히 높게나타났다. 이는 우리나라의 하천의 pH 범위는 7.0-7.8의 범위이고, pH 7.0의 물 중 α-endosulfan 및 β-endosulfan의 반감기가 35.4와 37.5일인데 반해 pH는 특정되지 않았으나 물중 endosulfan sulfate의 반감기가 최소 178일 이상으로 α-

Table 5. Recovery.	LOD and RSD	of residual	organochlorine	nesticides in	agricultural water

D40-14	Recovery (%)		LOD	RSD (%)	
Pesticides	10 μg/L	50 μg/L	$(\mu g/L)$	10 μg/L	50 μg/L
Group I					
α-НСН	110.9 ± 1.4	83.1 ± 1.4	0.003	1.3	1.7
β-НСН	81.6 ± 0.7	88.8 ± 2.8	0.004	0.9	3.2
у-НСН	94.8 ± 1.2	76.0 ± 3.2	0.002	1.2	4.2
δ-НСН	106.2 ± 2.2	103.1 ± 2.6	0.002	2.0	2.5
α-Endosulfan	74.4 ± 1.2	87.4 ± 1.5	0.002	1.6	1.7
4,4-DDE	76.5 ± 1.4	83.2 ± 2.2	0.002	1.8	2.6
Endrin	84.7 ± 1.7	85.6 ± 3.4	0.002	2.0	4.0
β-Endosulfan	73.7 ± 1.8	85.3 ± 1.4	0.001	2.5	1.6
2,4-DDT	77.3 ± 1.7	77.8 ± 2.8	0.002	2.2	3.6
Endosulfan sulfate	93.4 ± 1.5	89.0 ± 2.6	0.002	1.6	2.9
Group II					
HCB	88.2 ± 1.5	84.3 ± 1.5	0.001	1.7	1.8
Heptachlor	81.3 ± 2.1	81.7 ± 0.9	0.001	2.6	1.1
Aldrin	80.5 ± 2.8	82.0 ± 2.2	0.002	3.4	2.7
Heptachlorepoxide	83.3 ± 2.2	79.8 ± 3.3	0.002	2.7	4.1
2,4-DDE	88.5 ± 3.2	85.0 ± 2.6	0.002	3.6	3.1
Dieldrin	84.1 ± 1.5	84.3 ± 1.8	0.002	1.8	2.1
2,4-DDD	77.8 ± 2.8	82.6 ± 2.2	0.002	3.6	2.7
4,4-DDD	88.9 ± 1.9	89.5 ± 1.5	0.004	2.2	1.7
4,4-DDT	88.7 ± 2.6	88.2 ± 2.8	0.002	2.9	3.2

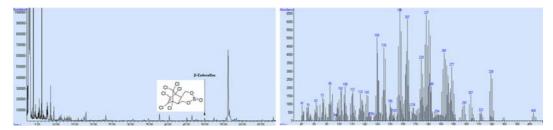


Fig. 3. Representative GC-MS chromatogram (left) and mass spectrum (right) of detected β -endosulfan in agricultural water samples.

Table 6. Residues of residual organochlorine pesticides in agricultural water

Pesticides	Detection range (μg/L)	Detection number (Frequency, %)
α-Endosulfan	0.11-0.18	8 (9.1)
β-Endosulfan	0.08-0.12	10 (11.4)
Endosulfan sulfate	0.11-0.13	20 (22.7)

endosulfan 및 β-endosulfan 비해 endosulfan sulfate의 반감 기가 현저히 길기 때문에 인 것으로 판단된다(Cheng et al., 1997; Jung et al., 1997; Spero et al., 2000; Lee et al., 2003a; Lee et al., 2003b).

수생태계에의 영향

하천에 유입된 endosulfan은 메기(Mystus vittatus)의 아가

미, 신장 및 적혈구 조직의 single-cell DNA strand를 파괴하는 유전독성을 유발하고, 하천의 절지동물과 물고기의 5%에 영향을 끼치는 농도(hazardous concentration, HC5)가 total endosulfan 으로 절지동물 0.02, 물고기 0.05 μg/L 수준으로 보고되고 있다(Bollmohr et al. 2007; Sharma et al., 2007). 미국 환경보호국(United States Environmental Protection Agency, US EPA, 2007)도 endosulfan이 수서생물에

매우 유독한 물질로 96시간 노출 시 LC₅₀ (lethal concentration, 50%) arainbow trout 0.8, fathead minnows 1.5, striped bass 0.1 µg/L, NOAEC (no observed adverse effect concentration) are rainbow trout 0.1, feathead minnows 0.2, stripped bass 0.01 µg/L로 보고하고 있다. 또한 물벼룩 (Monia macrocopa Straus)은 endosulfan 0.4 µg/L 수준에서 수정률이 70% 감소하고, 표범개구리(Rana pipiens) 올챙이 는 endosulfan 6.4 µg/L 수준에서 84%가 치사하였고, endosulfan 1 μg/L 수준에 표범개구리가 28일간 노출 시 100%가 치사하였으며 0.2 μg/L 수준에서도 현저한 치사율을 나타냈 다(Chuah et al., 2007; Relyea, 2008; Shenoy et al., 2009). 본 연구에서는 농업용수에서 조사대상 잔류성유기염소계 농 약 중 endosulfan류(α-endosulfan 0.11-0.18 μg/L, β-endosulfan 0.08-0.12 µg/L 및 endosulfan sulfate 0.11-0.13 µg/L) 만이 0.1-0.2 μg/L 수준으로 검출되었으며, 이 수준은 외국의 선 행연구와 비교 시 우리나라의 수서생물 및 생태에 영향을 끼칠 수도 있으므로 지속적인 endosulfan류에 대한 농업환 경 중 동태에 관한 연구 및 모니터링 조사가 수행되어야 할 것으로 판단된다.

감사의 글

본 연구는 농촌진흥청 공동연구사업 및 국립농업과학원 PJ010922의 지원에 의해 이루어졌습니다.

Literature Cited

- Bollmohr, S., J. A. Day and R. Schulz (2007) Temporal variability in particle-associated pesticide exposure in a temporarily open estuary, Western Cape, South Africa. Chemosphere 68:479-488.
- Chen, L., Y. Ran, B. Xing, B. Mai, J. He, X. Wei, J. Fu and G. Sheng (2005) Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60:879-890.
- Chuah, T. S., J. Y. Loh and Y. S. Hii (2007) Acute and chronic effects of the insecticide-endosulfan on freshwater cladoceran, *Monia macrocopa* Straus. Bull. Environ. Contam. Toxicol. 79:557-561.
- Chung, J. B., N. J. Kim and J. K. Kim (1997) Water pollution in some agricultural areas along Nakdong River. Korean J. Environ. Agric. 16(2):187-192.
- Gonzalez, M., K. S. B. Miglioranza, J. E. Aizpun de Moreno and V. J. Moreno (2005) Evaluation of conventionally and organically produced vegetables for high lipophilic organochlorine pesticide (OCP) residues. Food Chem. Toxicol. 43:261-269.
- Jung, Y. S., J. E. Yang, Y. K. Joo, J. Y. Lee, Y. S. Park, M. H. Choi and S. C. Choi (1997) Water quality of streams and

- agricultural wells related to different agricultural practices in small catchments of the Han River basin. Korean J. Environ. Agric. 16(2):199-205.
- Lee, D. J., J. S. Cho, Y. I. Kuk and H. G. Ahn (2003a) Water quality of streams and riparian vegetation at rice cultivation area of eastern Jeonnam. Korean J. Envirion. Agric. 22(1) 7-15.
- Lee, H. S., H. J. Jeon, H. S. Lee and S. E. Lee (2015) Pesticideorginated persistent organic pollutants in agricultural waterways in Chungcheong Province, Korea. J. Appl. Biol. Chem. 58(4):291-294.
- Lee, J. H., B. J. Park, J. K. Kim, W. I. Kim, S. M. Hong, G. J. Im and M. K. Hong (2011) Risk assessment for aquatic organism of pesticides detected in water phase of six major rivers in Korea. Korean J. Pestic. Sci. 15(1):48-54.
- Lee, K. B., C. H. Kim, D. B. Lee, J. G. Kim, C. W. Park and S. Y. Na (2003b) Species diversity of riparian vegetation by soil chemical properties and water quality in the upper stream of Mankyong River. Korean J. Environ. Agric. 22(2):100-110.
- Lim, S. J., Y. T. Oh, J. H. Ro, J. Y. Yang, G. H. Choi, S. H. Ryu and B. J. Park (2016a) Persistent organic pollutants (POPs) residues in greenhouse soil and strawberry-Organochlorine pesticides. Korean J. Environ. Agric. 35(1):6-14.
- Lim, S. J., Y. T. Oh, J. H. Ro, J. Y. Yang, G. H. Choi, S. H. Ryu, B. C. Moon and B. J. Park (2016c) Investigation of residual pesticides in green perilla (*Perilla frutescens* var. japonica Hara) greenhouse soil and its leaves. Korean J. Pestic. Sci. 20(3):221-227.
- Lim, S. J., Y. T. Oh, J. Y. Yang, J. H. Ro, G. H. Choi, S. H. Ryu, B. C. Moon and B. J. Park (2016b) Development of multiresidue analysis and monitoring of persistent organic pollutants (POPs)-Used organochlorine pesticides in Korea. Korean J. Pestic. Sci. 20(4):319-325.
- Mikes, O., P. Cupr, S. Trapp and J. Klanova (2009) Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (*Raphanus sativus*). Environ. Pollut. 157:488-496.
- Park, N. J., G. Ok, S. N. Heo, Y. K. Lim and J. K. Lee (2012) Persistent characteristics and risk assessment of organic chlorinated pesticides in the Nakdong river basin. J. Korean Soc. Environ. Anal. 15(3):224-233.
- Relyea, R. (2008) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologica 159(2):363-376.
- Sharma, S., N. S. Nagpure, R. Kumar, S. Pandey, S. K. Srivastava, P. J. Singh and P. K. Mathur (2007) Studies on the genotoxicity of endosulfan in different tissues of fresh water fish *Mystus vittatus* suing the Comet assay. Arch. Environ. Contam. Toxicol. 53(4):617-623.
- Shenoy, K., B. T. Cunningham, J. W. Renfroe and P. H. Crowley (2009) Growth and survival of Northern leopard frog (*Rana pipiens*) tadploles exposed to two common

pesticides. Environ. Toxicol. Chem. 28:1469-1474.
Spero, J. M., B. Devito and L. Theodore (2000) Regulatory chemical handbook. Boca Raton, CRC Press, New York. pp 315-317.

US EPA (2007) United States Environmental Protection Agency, Appendix 1 to Addendum. Environmental Fate and Ecological Risk Assessment of Endosulfan. Office of Prevention, Pesticides, and Toxic Substances.

임성진 † · 오영탁 † · 김승용 † · 노진호 · 최근형 · 류송희 · 김상수 2 · 박병준*

농촌진흥청 국립농업과학원 화학물질안전과 「전북대학교 농과대학 생물환경화학과 2농촌진흥청 국립농업과학원 농자재평가과

요 약 본 연구에서는 농업용수 중 잔류성유기염소계 농약의 잔류량을 조사하고자 하였고, 분석을 위한 시료 전처리 방법은 액액분배법을 사용하였다. 잔류성유기염소계 농약의 검출한계, 회수율 및 상대표준편차는 각각 0.001-0.004 μg/L, 73.7-110.9% 및 0.9-4.2%의 범위로 적합한 결과를 나타냈다. 전국 88개 시군에서 채취한 농업용수 시료에서는 조사대상 잔류성유기염소계 농약 중 α-endosulfan, β-endosulfan 및 endosulfan sulfate 만이 검출되었고, 그수준은 각각 0.11-0.18, 0.08-0.12 및 0.11-0.13 μg/L이었다. 조사대상 시료 중 α-endosulfan, β-endosulfan 및 endosulfan sulfate가 각각 8 (9.1%), 9.100 (9.101) 및 9.101 (9.101) 및 9.101 (9.101) 기속적인 모니터링 조사가 수행되어야 함을 나타냈다.

색인어 농업용수, 엔도설판류, 모니터링, 잔류성유기오염물질, 유기염소계 농약