농약과학회지(Korean J. Pestic. Sci.)

Vol. 24, No. 4, pp. 321-333 (2020) Open Access https://doi.org/10.7585/kjps.2020.24.4.321

ORIGINAL ARTICLES

Multi-Residue Determination of Pesticides in Farmed Aquatic Animal Products Using Gas Chromatography-Tandem Mass Spectrometry

Dasom Shin, Joohye Kim¹, Hui-Seung Kang¹, Chi-Hwan Lim^{*}

Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea ¹Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Chungcheongbuk-do 28159, Republic of Korea

(Received on September 24, 2020. Revised on October 22, 2020. Accepted on October 28, 2020)

Abstract In the present study, an analytical method was developed and optimized for screening and confirmation of multi-pesticide residues in farmed aquatic animal samples. Target pesticides (organochlorines, organophosphorus, and synthetic pyrethroids) were extracted via the QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach. Ethyl acetate was used for extraction of pesticides from the samples (flatfish, eel, shrimp, and Manila clam), which were then purified using C₁₈ and primary secondary amine. Finally, the extracts were filtered through a 0.22-µm polytetrafluoroethylene syringe filter and subsequently analyzed using gas chromatography coupled with mass spectrometry. The target analytes were ionized in the positive mode of electron impact ionization using multiple reaction monitoring. According to the CODEX CAC/GL-71 guideline, accuracy, precision, linearity, and limit of detection were evaluated for all matrices. The accuracy (recoveries) was between 62.4% and 120%, and precision (relative standard deviations) was below 20%. The linearity of the matrix calibration curves was $r^2>0.98$. The limits of detection and quantification for all pesticides were $\leq 3 \mu g/kg$ and $\leq 10 \mu g/kg$, respectively. In real sample (n=79) analysis, trifluralin was detected at 67 µg/kg in one Manila clam sample. Based on our results, the proposed method was satisfactory for pesticide residue determination in aquatic animal products.

Key words Analytical method, Fishery products, GC-MS/MS, Pesticide, Residue

Introduction

A wide range of pesticides (insecticide, fungicides, and herbicides) could potentially be transferred into aquatic animal tissue; however, little is known about pesticide accumulation in aquatic animal products. Although most persistent pesticides have been banned since the 1970s, they are still continuously being detected in seafood (Zhao et al., 2016). The organochlorine pesticides have low volatility, high stability, and lipophilic behavior, which are responsible for their persistence in the environment and concentration in fat and tissues. The unintended use of pyrethroids and organophosphorus pesticides is sufficient to reach rivers and the marine environment, thus affecting

*Corresponding author

E-mail: chlim@cnu.ac.kr

aquatic animal products. Owing to their metabolic activity in animals, pyrethroids tend to bioaccumulate, becoming a potential source of contamination in foodstuffs. Consequently, pesticide residues have to be monitored in foodstuffs to control food quality and prevent risks to human health (Stefanelli et al., 2009). In addition, a previous study reported that certain pesticides are illegally used in high concentrations for controlling and preventing parasitic and microbial diseases under stressful conditions in fish farms (Sabra & Mehana, 2015). Therefore, pesticide residues should also be monitored and controlled on aquaculture farms and the surrounding environment (Sapozhnikova & Lehotay, 2015).

Due to the structure of pesticides and their chemical properties, pesticide residues are usually analyzed using gas chromatography coupled with electron capture detection (GC/ECD) or using mass spectrometry (GC/MS). GC–MS/

MS is a selective and sensitive technique that is acceptable for the simultaneous detection of volatile and thermostable pesticide residues in food commodities of animal origin (Raina, 2011). The analytical methods used for the determination of pesticide residues in animal products and food samples (n=60) had a detection rate of 41.7% (Nasiri et al., 2016; Zhao et al., 2016). However, there is a paucity of information on analytical methods used for multipesticides in fish using GC-MS/MS (Sapozhnikova & Lehotay, 2013). There are currently no analytical methods for the simultaneous determination of 51 compounds in aquatic animal products.

Pesticide residue analysis in aquatic animal product samples is challenging due to the low concentrations and a wide range of pesticides in a complex matrix (Chan et al., 2012). Therefore, it is necessary to develop rapid, reliable, and effective analytical methods for the simultaneous determination of multiple pesticide compounds (Nasiri et al., 2016). Based on our previous study, we focused on 51 pesticides (including thermostable and strong volatile organochlorines, organophosphorus, and pyrethroids) having the potential to contaminate aquatic animal products. An analytical method was developed and validated for the determination of pesticides in fish (flatfish and eel), shrimp, and Manila clam. The proposed method was applied to aquatic animal samples collected from retail markets.

Materials and Methods

Reagents and chemicals

All pesticide standards were of high purity (>90%) and were purchased from Dr. Ehrenstofer (Augsburg, Germany) and Sigma-Aldrich (Buchs, Switzerland). HPLC grade ethyl acetate, methanol, acetone, and n-hexane were purchased from Merck Inc. (Darmstadt, Germany). Anhydrous magnesium sulfate (MgSO₄), sodium chloride, and octadecylsilane (C₁₈) were purchased from Sigma-Aldrich and Waters (Milford, MA, USA), respectively. A filter of 0.22µm polytetrafluoroethylene (PTFE) was acquired from Teknokroma (Barcelona, Spain).

The stock solution of individual analyte (approximately $1000 \mu g/mL$) was prepared in a 50-mL volumetric flask using acetonitrile, methanol, acetone, and n-hexane as solvents. For working standard mixtures, a range of final target concentrations was prepared in acetone from the above stock solution by serial dilution. All stock solutions

were stored at -20°C in amber glass bottles to prevent photolysis.

Sample preparation

Aquatic animal product samples were purchased from local markets in Korea. The de-skinned fillets (over 500 g) were homogenized and then stored at -20°C. The blank samples were tested to ensure that it did not contain any of the target pesticides before use as a negative control. The aquatic animal samples (over 500 g) were prepared for analysis using matrix-matched calibration and monitoring. The homogenized samples (2 g) of aquatic animal samples were transferred into a 50 mL centrifuge tube. Thereafter, 10 mL of ethyl acetate was added to each sample, shaken vigorously by hand for 30 s. This was followed by the addition of 500 mg of NaCl and 1 g of anhydrous MgSO4 to each sample, which was then vortexed for 5 min. After vortexing, the extracts were put into a freezer at -20°C for 15 min and then centrifuged at $4500 \times g$ at a temperature of 4°C for 10 min. The supernatant was transferred into a 50 mL centrifuge tube. The organic phase was evaporated under nitrogen stream at 50°C and diluted in 10 mL of acetonitrile, after which C18 (200 mg), PSA (200 mg), and anhydrous magnesium sulfate (500 mg) were added. The mixture was shaken for 5 min and centrifuged at $4500 \times g$, 4°C for 10 min. The supernatant was transferred into a 15-mL centrifuge tube and evaporated using nitrogen stream at 50°C and reconstituted with 1 mL of 20% acetone in hexane. Finally, the extracts were filtered through a 0.22-µm PTFE syringe filter. The final extracts (5 µL) were injected into the GC-MS/MS system for further analysis.

GC-MS/MS analysis

An Agilent 7890 GC system coupled with an Agilent 7010 GC/MS Triple Quadrupole (Agilent Technologies, Santa Clara, CA, USA) and a $Rxi^{\$}$ -5Sil MS (0.25 mm i.d. × 30 m, 0.50 µm film thickness) capillary column was used for the GC-MS/MS analysis. Electron impact ionization (EI) mass spectra was obtained at 70 eV and monitored from 100 to 600 m/z for full scan mode analysis. The working parameters were as follows: injector temperature was set at 280°C and the carrier gas (He) at 1.0 mL/min. The optimized GC oven temperature was initially 70°C (held for 3 mins), increased to 180°C at a rate of 20°C/min, and then finally to 300°C at 5°C/min (held for 7 mins). The

mass selective detector transfer line was set at 280° C and the ion source at 230° C. The injection mode was splitless, and the injection volume was 1 µL. Data collection was performed in the multiple reaction monitoring (MRM) mode, and the optimized MRM parameters are listed in Table 1.

Method validation

The method was validated according to the Codex guideline (CAC/GL 71, 2009). The blank samples (flatfish, eel, shrimp, and Manila clam) were tested to ensure that they did not contain any interferences and/or target compounds. The measured parameters were the linearity, limits of detection (LOD), limits of quantification (LOQ), accuracy, and precision. The validation study was carried out using tissue samples previously checked to be free of residual pesticides. The LOD was calculated at a signal-tonoise ratio (S/N) of 3, whereas the LOQ value was calculated using an S/N ratio of 10. The linearity was tested using matrix-matched calibrations (blank, 10, 20, 50, 100, 150 µg/kg) that were prepared by adding the appropriate amount (200 µL) of standard mixtures in the solvent into the fish and shrimp samples. The accuracy and precision (expressed as recovery and relative standard deviation, respectively) were determined by analyzing all samples spiked at 10, 20, and 100 µg/kg. The accuracy and precision were validated based on three target concentrations (10, 20, and 100 µg/kg). The accuracy and precision

were determined at the three levels in the blank samples in five replicate analyses.

Results and Discussion

Optimization of GC-MS/MS conditions

GC-MS/MS is a valuable approach for the determination of highly hydrophobic and volatile organochlorine pesticides (Hernández et al., 2013; Chatterjee et al., 2016; FSIS, 2018). In the current study, GC-amenable pesticides (organophosphorus, pyrethroids, carbamates insecticides, herbicides, and fungicides) were selected based on their potential use and contamination in fishery products and the aquaculture industry. GC-MS/MS based analytical methods have been preferred for the determination of pesticide residues in fish due to their high sensitivity and selectivity with low interferences (Munaretto et al., 2013; Sapozhnikova & Lehotay, 2013; Manuelmolina-Ruiz et al., 2014; Sahu & Nelapati, 2018; Colazzo et al., 2019).

The precursor ions, product ions, and collision energies were optimized for the best intensity of target compounds (Table 1). Based on a full scan spectrum, precursor ions were selected; then, the collision energy was adjusted to generate the product ions. MRM transitions with the highest intensities with related collision energies as well as retention times for all the pesticides were selected for quantification. The most abundant precursor ion with the highest m/z value was designated as the quantification ion,

Table 1. MRM transition and optimized parameters of GC-MS/MS for 51 target compounds

Compounds	Formula	Retention time (min)	Molecular weight (g/mol)	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
				263 ^{a)}	193	40
Aldrin	$C_{12}H_8Cl_6$	15.9	364.9	263	191	40
				255	220	15
				136	93.0	20
Allethrin	$C_{19}H_{26}O_{3}$	17.1	302.4	123	81.0	10
				123	79.9	20
				219	183	5
alpha-HCH	$C_6H_6Cl_6$	12.1	290.8	217	181	5
				181	145	15
				219	183	10
beta-HCH	$C_6H_6Cl_6$	12.7	290.8	219	147	30
				181	145	10
				344	159	5
Carbophenothion	$C_{11}H_{16}ClO_2PS_3$	21.1	342.9	342	199	5
				342	157	5

Table 1. continued

Compounds	Formula	Retention time (min)	Molecular weight (g/mol)	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
		. ,		375	266	20
Chlordane cis	$C_{10}H_6Cl_8$	18.2	409.8	373	266	20
_				373	264	20
				375	266	20
Chlordane_trans	$C_{10}H_6Cl_8$	17.7	409.8	373	266	20
				373	264	20
				213	171	10
Chlorpropham	$C_{10}H_{12}CINO_2$	11.6	213.7	213	127	5
				171	127	15
				314	258	20
Chlorpyrifos	C ₉ H ₁₁ Cl ₃ NO ₃ PS	15.7	350.6	199	171	15
				197	169	15
				286	271	20
Chlorpyrifos methyl	C7H7Cl3NO3PS	14.4	322.5	286	93.0	20
				-	-	-
				219	147	30
delta-HCH	C ₆ H ₆ Cl ₆	13.6	290.8	181	146	10
				181	145	10
				255	174	5
Deltamethrin	$C_{22}H_{19}Br_2NO_3$	31.4	505.2	253	174	5
				253	93.0	15
				250	139	15
Dicofol	C ₁₄ H ₉ Cl ₅ O	16.2	370.5	139	111	15
				139	75.0	35
				277	241	10
Dieldrin	$C_{12}H_8Cl_6O$	18.1	380.9	277	206	20
				263	193	20
				241	206	20
Endosulfan_alpha	C ₉ H ₆ Cl ₆ O ₃ S	18.2	406.9	239	204	20
				207	172	20
				241	206	15
Endosulfan_beta	$C_9H_6Cl_6O_3S$	20.0	406.9	207	172	15
				205	170	15
				274	237	25
Endosulfan_sulfate	$C_9H_6Cl_6O_3S$	20.2	406.9	272	237	20
				239	204	15
				263	193	40
Endrin	$C_{12}H_8Cl_6O$	19.0	380.9	263	191	35
				245	173	30
				317	281	10
Endrin keton	$C_{12}H_8Cl_6O$	22.9	380.9	317	245	20
				317	101	15
				169	141	5
EPN	$C_{14}H_{14}NO_4PS$	23.2	323.3	169	77.0	20
				157	77.0	30

Multi-Residue Determination of Pesticides in Farmed Aquatic Animal Products Using Gas Chromatography-Tandem Mass Spectrometry 325

Compounds	Formula	Retention time (min)	Molecular weight (g/mol)	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
				163	135	10
Etofenprox	$C_{25}H_{28}O_3$	28.9	376.5	163	107	20
				163	77.0	30
				265	210	10
Fenpropathrin	$C_{22}H_{23}NO_{3}$	23.5	349.4	265	89	40
				209	116	15
				367	255	30
Fipronil	$C_{12}H_4Cl_2F_6N_4OS$	16.8	437.1	367	213	30
				351	255	15
				383	255	30
Fipronil sulfone	$C_{12}H_4Cl_2F_6N_4O_2S$	18.7	453.1	383	241	15
				255	228	15
				233	165	20
Flusilazole	$C_{16}H_{15}F_2N_3Si$	19.0	315.4	233	152	20
				233	91.0	30
				219	183	10
gamma-HCH	C ₆ H ₆ Cl ₆	13.0	290.8	219	147	30
				181	145	10
				274	237	20
Heptachlor	$C_{10}H_5Cl_7$	14.8	373.3	272	237	20
_				237	119	40
				355	265	15
Heptachlor_epoxide_a	$C_{10}H_5Cl_7O$	17.0	389.3	353	263	15
				237	143	25
				253	183	30
Heptachlor_epoxide_b	$C_{10}H_5Cl_7O$	17.1	389.3	217	181	30
				183	119	30
				284	249	25
Hexachlorbenzene	C_6Cl_6	12.3	284.8	284	214	40
				-	-	-
				218	203	20
Indoxacarb	$C_{22}H_{17}ClF_{3}N_{3}O_{7}$	31.1	527.8	203	134	20
				203	106	30
				131	130	15
Kresoxim_methyl	$C_{18}H_{19}NO_4$	19.1	313.3	131	89.0	35
				116	89.0	15
				159	131	20
Mecarbam	$C_{10}H_{20}NO_5PS_2$	17.1	329.4	131	86.0	15
				131	74.0	10
				238	162	10
Metolachlor	$C_{15}H_{22}CINO_2$	15.7	283.8	162	133	15
				162	117	40
				164	98.0	10
MGK_264	$C_{17}H_{25}NO_2$	16.4	275.4	164	93.0	10
				164	80.0	30
				409	300	15
Nonachlor cis	$C_{10}H_5Cl_9$	20.2	444.2	407	300	30
				407	298	30

Table 1. continued

Table 1. continued

Compounds	Formula	Retention time (min)	Molecular weight (g/mol)	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
				409	300	25
Nonachlor_trans	$C_{10}H_5Cl_9$	18.3	444.2	407	300	15
				-	-	-
				187	123	20
Oxychlordane	$C_{10}H_4Cl_8O$	17.0	423.7	187	87.0	35
				187	84.9	35
				291	109	20
Parathion	$C_{10}H_{14}NO_5PS$	15.9	291.3	291	80.9	30
				186	140	5
				265	194	10
Pentachloroaniline	C ₆ H ₂ Cl ₅ N	14.1	265.3	265	192	5
				-	-	-
				183	168	20
Permethrin cis	$C_{21}H_{20}Cl_2O_3$	26.8	391.3	183	155	10
_				183	154	20
				308	70.0	15
Prochloraz	$C_{15}H_{16}Cl_3N_3O_2$	26.9	376.7	180	138	10
	10 10 5 5 2			180	69.0	20
				285	96.0	5
Procvmidone	C ₁₃ H ₁₁ Cl ₂ NO ₂	17.3	284.1	283	96.0	5
1100911100110	-15 11 - 2 2			283	68.0	20
				135	107	20
Propargite	$C_{10}H_{24}O_4S$	22.1	350.5	135	94.9	20
1	- 19 20 - 4-			135	77.1	30
				175	147	15
Propyzamide	C ₁₂ H ₁₁ Cl ₂ NO	13.1	256.1	173	145	20
-F.J	-1211 - 22			173	109	35
				197	141	10
Tefluthrin	$C_{17}H_{14}ClF_7O_2$	13.4	418.7	177	137	20
				177	127	20
				336	218	20
Tetraconazole	$C_{13}H_{11}Cl_{2}F_{4}N_{3}O$	16.0	372.1	336	204	40
	15 11 2 4 5			336	164	30
				265	250	15
Tolclofos methyl	C ₀ H ₁₁ Cl ₂ O ₂ PS	14.6	301.1	265	220	25
				265	93.0	30
				299	271	20
Trichloronate	C10H12Cl2O2PS	16.2	333.6	297	269	20
	- 10123 - 2			297	223	20
				306	264	10
Trifluralin	$C_{13}H_{14}F_{3}N_{2}O_{4}$	11.6	335.3	306	160	20
	-10-10-31,304			264	160	10
				285	212	10
Vinclozolin	$C_{12}H_9Cl_2NO_3$	14.5	286.1	187	124	20

^{a)}The bold text expressed as quantification ion.

whereas the least intense product ion was designated as the qualifier ion. Due to the co-eluting sample interfering with the analytes, two precursor or additional product ions were used as qualifiers to prevent possible false-positives.

Optimization of extraction and purification

The QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach was applied to this method because of its versatility (de Oliveira et al., 2019). The analytical method was developed and validated using GC-MS/MS based on QuEChERS. The optimization of purification was carried out using a salting-out solvent extraction step and a d-SPE clean-up step to remove matrix components (e.g., fatty acid). For the extraction step, salts that are easily electrolyzed in an aqueous solution were used as reagents to achieve separation of the ethyl acetate of nonpolar pesticides in an organic solvent (Sapozhnikova, 2014; Cao et al., 2015; FSIS, 2018). For the purification step, MgSO₄, PSA, and C₁₈ were used. MgSO₄ was used for moisture removal (Perović et al., 2018). PSA provided polar adsorption and weak anion exchange, which removed polar compounds such as organic acids, fatty acids, carbohydrates, and sugars, whereas the C₁₈ hydrocarbon chains eliminated fatty acids and nonpolar interfering substances (Sapozhnikova & Lehotay, 2013; Shin et al., 2018; Kim et al., 2020). Based on previous studies, the combination of MgSO₄ (500 mg), C_{18} (200 mg), and PSA (200 mg) was adopted for multi-pesticide detection in fishery products.

Method validation

Specificity was evaluated through the analysis of the four different fishery product samples against a reagent blank. No interference was observed at the same retention time as the analyte. The validation process was performed by determining the linearity, LOD, LOQ, accuracy, and precision based on the CODEX guidelines (CODEX, 2014). The chromatograms of the target compounds are shown in Figure 1. The linearity (expressed as correlation coefficients, r^2) of the matrix calibration curves was >0.98 for all target compounds. Our results showed good linearity and allowed for the coverage of all target compounds. The LOD and LOQ were ≤ 3 and $\leq 10 \mu g/kg$, respectively. The accuracy (expressed as recovery, %) and precision (expressed as RSD, %) of the target compounds were evaluated in spiked blank samples at three concentrations (10, 20, and 100 µg/kg). The overall recoveries for all the target compounds ranged from 62.4% to 120%. The precision was observed at 20.7% (Table 2). Three compounds (i.e., chlorothalonil, iprodione, and terbufos) were excluded before the start of method validation because of their inconsistent recoveries and/or unsatisfactory linearity of the calibrations. Some pesticides cannot be appropriately assessed using the buffered QuEChERS method (Lehotay et al., 2005; Cho et al., 2016).

Application and real sample monitoring

The applicability of the method was evaluated through the analysis of the target pesticides in 79 fishery product samples purchased from the local markets in Korea. Trifluralin was detected in one sample (1%) at a concentration of 67 µg/kg in the Manila clam, while its residue in flatfish was below LOQ. Trifluralin is frequently detected in aquatic animal samples. The residue of trifluralin was reported to be above 1 µg/kg in shrimp produced in Asian countries (Chan et al., 2012). Trifluralin residues (35-204 µg/kg) were detected in 11 pangasius fillet imported from Vietnam in 2011 (Chan et al., 2013). Previous studies have revealed that the trifluralin residues in Manila clam and flatfish (<LOQ) indicated the presence of pesticide runoff into the aquaculture environment (Shin et al., 2011). Trifluralin has been reported to mostly appear in runoff water in agricultural fields (Antoniouds, 2012).

Fig. 1. GC-MS/MS Chromatogram of a spiked sample with 51 pesticides at 10 µg/kg.

	Target	Flatfish (1	n=5)	Eel (n=5))	Shrimp (n=5	j)	manila clam ((n=5)
Compounds	testing level	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(µg/kg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	10	108	4.8	86.7	8.1	99.1	8.4	88.4	14.8
Aldrin	20	102	6.2	95	5.2	104	13.8	96.7	8.6
	100	100	2.5	95.1	5	102	10.2	92.5	18.1
	10	108	6.3	92.1	17.2	106	16.6	110	16.9
Allethrin	20	103	10.2	91.4	14.5	100	19.2	110	9.8
	100	88.1	11	90.9	12.3	96.8	15.7	98.4	6
	10	109	4.2	86.5	7.8	94.5	11.1	73.5	11.6
Carbophenothion	20	104	6.1	94.5	6.2	105	7.5	86.2	5.5
	100	102	1.6	95.4	4.1	106	8.7	86.9	13.4
	10	108	1.4	85.6	5.2	100	9.5	97.3	6.7
Chlordane-cis	20	102	4.3	94.4	4.2	104	4.7	97.3	6.8
	100	98.2	2.5	96.9	3.7	104	6	98.9	12.3
	10	110	2.7	89.6	5.1	98.8	7.9	72.7	12.2
Chlordane-trans	20	102	4.4	95	4.1	102	5.7	92.1	6.9
	100	100	2.1	95.5	4	105	6.8	104	9.3
	10	117	11.6	88.9	8.7	99	11.6	80.7	15.2
Chlorpropham	20	105	13.3	88.5	8.7	95.4	14	90.4	11
	100	107	4.3	86	6.7	92.5	12.4	96.8	16.4
	10	118	6.6	92.3	5.5	94.9	11	93.1	13
Chlorpyrifos	20	108	6.6	97	5.9	104	6.2	102	8.1
1.	100	103	2	94.8	4.1	103	9.8	103	15.2
	10	115	9	88.3	7.3	99	12	94.2	13.9
Chlorpyrifos methyl	20	106	11.1	93.1	8.4	98.8	8.4	96.5	9.2
10 0	100	103	4.1	91.9	4.8	102	19.4	92.8	13
	10	112	7.5	90.7	9.6	92.2	20.1	103	19.3
Deltamethrin	20	103	6.9	93.9	7.4	107	12.1	108	14.3
	100	101	4.4	93.2	3.9	119	13.8	109	6.6
	10	120	4.3	94.9	8.3	91	9	102	8.3
Dicofol	20	116	4.7	94.2	7.3	97.3	5.9	108	5.7
	100	113	2.7	97.7	3.2	94.3	7.3	118	14.3
	10	104	4.4	88.6	7.4	103	7.1	79.8	19.1
Dieldrin	20	100	6.2	93.7	4.3	104	4.4	89.9	8.9
	100	98.9	2.7	95.7	4.6	104	6.4	100	9.8
	10	109	2.8	91	5.9	108	16.5	95.7	6.9
Endosulfan α	20	104	5.3	98.2	4.3	107	4.6	98.3	3.5
	100	103	2.7	96.1	3	112	16.4	97.1	13.9
	10	106	2.1	87.3	56	100	6	96.5	69
Endosulfan ß	20	101	4 1	96.4	3.7	103	44	97.6	3.9
Endosunun p	100	98.8	2.4	98.5	43	104	57	98.8	11.1
	10	107	4.2	83.9	7.8	101	62	89.1	73
Endosulfan sulfate	20	100	5.2	94.9	3.9	103	3.8	93.6	2
Lindosunan sundu	100	102	3.2 2	98.5	3.0	103	<u> </u>	92 A	- 6.6
	10	102	27	20.5 84 3	5.9	105	т.0 6 4	75.2	93
Fndrin	20	100	2.7 4 5	0 4 .5 05 8	3.0	100	37	94 7	7.9
	100	97 7		98.6	4.8	105	45	107	13
	100	21.1	4	20.0	7.0	105	т.Ј	107	1.5

Table 2. Accuracy and precision at three testing levels in fishery products, shrimp and manila clam

Multi-Residue Determination of Pesticides in Farmed Aquatic Animal Products Using Gas Chromatography-Tandem Mass Spectrometry 329

Table 2. continued

	Target	Target Flatfish (n=5)		Eel (n=5)		Shrimp (n=5)		manila clam (n=5)	
Compounds	testing level	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(µg/kg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	10	106	1.8	90.4	4.9	100	6.3	79.5	2.3
Endrin keton	20	102	3.3	95.3	3.7	104	3.9	76.1	5.8
	100	102	1.8	96.2	4.4	105	5.4	78.3	14
	10	102	2.6	89	4.6	98.3	9.8	107	3.1
EPN	20	97.6	5.4	89.1	4.2	104	6.6	98.1	2.6
	100	103	1.1	91.5	4.3	109	8.1	94.3	4.7
	10	114	5.3	84.2	8.1	92.7	9.6	119	6.1
Etofenprox	20	107	5.8	95.9	7.1	101	5.5	117	5
	100	101	3.4	97.3	4.6	105	8.1	109	8.2
	10	108	3.8	89	6.4	96.1	10.4	86.3	5.8
Fenpropathrin	20	101	4.9	96	5.3	105	7	95.4	5.5
	100	99.2	1.7	94.8	4.5	107	8.6	102	6.3
	10	110	2	93.7	7.3	95.8	17.4	105	4.1
Fipronil	20	101	4.6	96.3	6.6	100	11	100	3.5
	100	101	3.7	95.6	4	101	16.8	91.6	5.3
	10	106	2.8	86.9	5.7	117	12.8	100	4
Fipronil sulfone	20	100	3.9	94.5	4.3	80.7	14.6	95.2	4.4
	100	98	3.4	96.2	3.6	83.3	12.5	89.3	5.5
	10	106	2.8	87.7	6.2	108	13	99.1	5.3
Flusilazole	20	101	5	97.7	4.3	91.6	15.7	100	4
	100	97	1.6	96.6	3.4	94.3	14.7	95.5	5.8
	10	112	9.6	81.2	7	103	14.1	78.6	17.4
alpha-HCH	20	105	11.8	91.1	6.2	116	12.6	94.7	11.5
Ĩ	100	106	5.2	88.6	8.5	93.5	19.9	86	19.3
	10	110	3.4	79.8	8.2	104	6.5	84.8	13.2
bata-HCH	20	97.5	7.4	91.1	4.6	107	7.9	99.1	7.4
	100	86.5	3.9	95.4	3.9	112	12.9	109	14.6
	10	109	4	86.5	6.2	103	6.6	81.4	8.6
delta-HCH	20	104	4.3	93.6	5.3	100	6.7	93.9	5.6
	100	101	1.8	96.7	4.5	106	14.9	106	12.8
	10	113	6.8	86.8	5.7	106	9.2	83.4	17.1
gamma-HCH	20	105	7.6	92.5	5.5	107	16.1	83.5	11.3
5	100	105	3.3	91.3	5.1	98	12.2	81.6	12.7
	10	112	5.3	82.9	7	104	8.6	76.5	17.8
Heptachlor	20	104	8.2	92	6.1	105	15.6	79.7	10.1
	100	104	2.3	93.2	5.3	99	12.4	71.7	13.5
	10	109	2.7	90.5	6.8	101	73	97.4	71
Hentachlor enoxide a	20	101	53	95.2	4.2	101	6.5	96.4	6.9
riepatenioi epoxide a	100	100	17	95.2	3.9	105	5.4	96	13.4
	100	112	54	93.8	16.8	86.6	8	89.8	17.1
Hentachlor enovide h	20	98.6	э. т 7.6	96.8	91	100	63	102	15.8
	20 100	100	7.0 4.1	02 A	27	106	5.0	102	15.0
	10	111	т.1 7 Д	118	2.7 7 8	100	17	75.1	11.5
Hevenhlarhanzana	20	05 /	7. 4 7.2	110	7.0 7.5	100	1/ 16 1	00 A	11.5
TRACHIOIDENZENE	20 100	06 C	1.5	107	1.5	105	17.0	74.5	14.0
	100	90.2	1.0	10/	1.0	105	1/.0	/4.3	14.9

Table 2. continued

	Target Flatfish (n=5)		Eel (n=5)		Shrimp (n=5)		manila clam (n=5)		
Compounds	testing level	Recovery	RSD	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(µg/kg)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	10	105	5.6	83.5	9.9	96.7	8.9	100	8.6
Indoxacarb	20	100	3.5	95.8	5.5	99.3	4.8	98.6	4.5
	100	96.4	3.1	98.4	2.9	98.2	9.6	96.5	6.4
	10	110	2	78.5	5.6	95.9	9.4	96.7	4.7
Kresoxim methyl	20	103	4.4	94.6	4.6	105	4.7	103	3
	100	97.3	2.1	100	4.2	105	7.8	107	8.2
	10	113	4	86.6	6.4	99.2	15	98.9	7.8
Mecarbam	20	106	5.5	93.7	6.5	104	9.6	101	3.2
	100	103	2.8	92.9	4.1	102	13.4	108	10.8
	10	108	2.7	87.1	5.7	95.9	10.7	80.4	9.5
Metolachlor	20	102	4.9	96.6	4.5	102	5.8	94.8	4.5
	100	96.8	1.3	95.9	4.5	101	9.7	102	12.1
	10	117	3.8	83.7	6.8	96.9	9.8	100	8.2
MGK-264	20	104	4.6	96.4	5.1	103	6.2	103	4.3
	100	101	1.4	97	3.8	103	9.3	104	12.6
	10	110	3.6	89.3	6.1	101	7.7	88.7	6.1
Nonachlor cis	20	105	4.5	96.2	4	105	5.6	92.3	4.1
	100	102	1.8	98	4	105	5.4	98.5	6.6
	10	117	2.4	81.6	7.7	97.5	8.1	81.2	10.7
Nonachlor trans	20	117	3.4	95.6	3.7	103	5.5	92.6	7
	100	115	2.8	102	4.6	106	6.2	104	11.6
	10	110	3.2	85.9	4.4	101	6.7	98.9	7.1
Oxychlordane	20	102	4.6	95.8	3	104	6.8	96.5	5.6
en jenner anne	100	100	1.9	96.2	3.8	103	6.6	97.1	14.1
	10	108	37	90.5	5.8	98.1	12.6	77.8	92
Parathion	20	100	6.6	91.1	5.0	101	8	88 7	6.5
i ulullon	100	104	3	89.6	47	105	133	99.3	13.9
	100	111	67	86	99	97.8	9.8	87.9	14.1
Pentachloroaniline	20	103	8.5	94.8	8	100	7.0 7.7	98.3	10
1 entaemoroamme	100	103	3.1	95.3	5	104	14.7	104	187
	10	103	3.1	95.5 87 7	57	92	91	115	84
Permethrin cis	20	105	62	94.2	6.8	102	7.2	111	8.5
i cinicului cis	100	103	2.1	95.7	0.0 4 2	102	7.2 8.7	110	10.3
	10	112	7.8	94.1	7.5	92.7	16.5	109	4.6
Prochloraz	20	107	6.8	03.5	8	103	73	100	т .0 5.6
Troemoraz	100	107	0.0	94.1	56	105	12.2	70.0	15.4
	10	100	2.2	9 4 .1	5.0	08.0	0.0	19.9 00 7	0.7
Progymidana	20	109	5.9	06.2	5.0	102	9.9 5 8	08.2	6.5 5 2
Trocymidone	20 100	103	5.0 1.9	90.2 05 4	30	103	5.0 8 0	70.1 102	J.J 0.9
	100	101	1.0	9 J.4 01 5	5.0 6.0	04.9	0.0	105	7.0 6 1
Dramana :+-	10	110	1.ð 4 1	ð1.3 00	0.8	94.ð	0.5 1 F	83.3 100	0.4
rropargite	20	100	4.1	98	4.0	100	4.5	100	2.5
	100	95.2 115	1.9	98.3	3.0	104	4.9	10/	0.0
Dua	10	115	/.4	87.4	/.9	96.4	11.4	/0.4	11.2
Propyzamide	20	10/	9	93.3	8.5	97.4	8.1	93.4	5.2
	100	103	3.8	93.1	4.6	97.2	10.1	109	14.1

Multi-Residue Determination of Pesticides in Farmed Aquatic Animal Products Using Gas Chromatography-Tandem Mass Spectrometry 331

	Target	Flatfish (1	n=5)	Eel (n=5)	Eel (n=5)		Shrimp (n=5)		manila clam (n=5)	
Compounds	testing level (µg/kg)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	
	10	115	8.1	83	7.9	96.5	10.8	86.9	18.1	
Tefluthrin	20	104	12.7	92	8.1	101	9.5	98.5	9.8	
	100	103	4.1	91.1	6	101	13.6	92.4	14.6	
	10	107	3	87.8	6.5	95	12.6	97.4	4.3	
Tetraconazole	20	101	3.6	94.3	4.8	101	6	98.3	4.7	
	100	97	2.1	96.6	3.2	102	11.4	92.2	6.9	
	10	115	7.1	87.7	7.4	98.1	11.2	86.4	14.6	
Tolclofos methyl	20	105	9.5	94.2	7.8	101	7.6	93.1	7.5	
	100	103	2.7	92.4	4.8	105	16.1	93.1	12.1	
	10	111	2.8	84.6	7.2	95	10.4	94.9	9.8	
Trichloronate	20	103	5.5	95.8	5.2	104	6.4	95.8	7.4	
	100	99.1	2.1	96.2	4.7	103	10.1	98.3	13.3	
	10	104	11.3	87.3	6.9	100	6.5	79.1	18.6	
Trifluralin	20	95.8	15.8	84.7	7.9	108	7.6	81	13.1	
	100	104	6.2	79.9	8.6	82.6	16.7	73.6	12.9	
	10	111	6.3	88.3	7.3	96.9	9.9	62.4	16.6	
Vinclozolin	20	105	7.6	95	7	99.4	5.9	89.8	7	
	100	103	2.6	94.9	4.5	100	9.2	116	17.9	

Table 2. continued

Furthermore, trifluralin residues in shrimp are associated with its use in the control of fungi and parasites in aquaculture farms and the surrounding environment. Further studies are needed to more clearly interpret the pesticide residues found in aquatic animal species.

The aquaculture industry has been overwhelmed by a wide range of parasitic and bacterial diseases affecting cultured species (Bondad-Reantaso et al., 2005). In order to prevent or treat these diseases, several chemicals have been used in high-density aquatic farms (Kang et al., 2018). Moreover, non-compliant samples in farmed aquatic animals are increasing due to the unintended and overuse of chemical compounds (Park et al., 2020). Further investigations are required to assess the dietary exposure to ethoxyquin residues and their health risks associated with the dietary intake of the farmed aquatic animals (Choi et al., 2020).

Conclusions

In this study, a multi-residue pesticide analysis method was developed and optimized for 51 pesticides in fishery products based on the QuEChERS approach combined with GC-MS/MS. The developed method was both selective and sensitive. The method was successfully tested

on 79 fishery product samples purchased from the local markets in Korea, proving to be suitable for routine multiresidue analyses of target pesticides for monitoring purposes. Trifluralin was detected in one sample (1%). The proposed method was successfully validated and applied for the identification and confirmation of pesticides in fishery products. These findings indicate that these compounds do not need to be as persistent as pesticides to accumulate in fishery products. Additionally, more extensive monitoring studies are needed to understand the potential of these compounds to bioaccumulate and assess their runoff from river water into aquaculture farms.

Acknowledgments

This study was supported by a grant from Chungnam National University and Ministry of Food and Drug Safety of Korea [grant numbers 17161MFDS651, 19161MFDS 581] in 2017 and 2019.

Author Information and Contributions

Dasom Shin, Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Master student, https://orcid.org/0000-0001-5623-9342

Joohye Kim, Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Researcher, https://orcid.org/0000-0002-4081-2404

Hui-Seung Kang, Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Doctor of Philosophy, https://orcid.org/0000-0003-2207-5559

Chi-Hwan Lim, Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Professor, http://orcid.org/ 0000-0001-9713-781X

Experimental work: D. S. and J.K., drafting and writing of the manuscript: D.S., revising of manuscript: H.-S. K., reviewing of the manuscript: H.-S. K. and C.-H. L.

Conflict of interest

The authors declare that they have no conflict of interest.

Literature Cited

- Antonious GF, 2012. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 47(7):608-621.
- Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, et al., 2005. Disease and health management in Asian aquaculture. Veterinary Parasitology, 132(3-4 SPEC. ISS.):249-272.
- Codex Alimentarius Commission (CAC), 2009. Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals CAC/GL 71. Available online: http://www.fao.org/input/download/ standards/11252/CXG_071e_2014.pdf (accessed on 2 July 2020).
- Cao Y, Tang H, Chen D, Li L, 2015. A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 998-999, 72-79.
- Chan D, Fussell RJ, Hetmanski MT, Sinclair CJ, Kay JF, et al., 2012. Detection of the illegal use of Trifluralin in shrimp farming. Residues of Veterinary Drugs in Food. Proceedings of the EuroResidue VII Conference, Egmond Aan Zee,

The Netherlands, 14-16 May, 2012. Volume 1, 2 and 3, 429-433.

- Chan D, Fussell RJ, Hetmanski MT, Sinclair CJ, Kay JF, et al., 2013. Investigation of the fate of trifluralin in shrimp. Journal of Agricultural and Food Chemistry, 61(10):2371-2377.
- Chatterjee NS, Utture S, Banerjee K, Ahammed Shabeer TP, Kamble N, et al., 2016. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect. Food Chemistry, 196:1-8.
- Cho J, Lee J, Lim C-U, Ahn J, 2016. Quantification of pesticides in food crops using QuEChERS approaches and GC-MS/MS. Food Additives & Contaminants: Part A, 33(12): 1803-1816.
- Choi SY, Kwon Nj, Kang HS, Kim J, Cho BH, et al., 2020. Residues determination and dietary exposure to ethoxyquin and ethoxyquin dimer in farmed aquatic animals in South Korea. Food Control, 111, 107067.
- Colazzo M, Alonso B, Ernst F, Cesio MV, Perez-Parada A, et al., 2019. Determination of multiclass, semi-polar pesticide residues in fatty fish muscle tissue by gas and liquid chromatography mass spectrometry. MethodsX, 6:929-937.
- de Oliveira LG, Kurz MHS, Guimarães MCM, Martins ML, Prestes OD, et al., 2019. Development and validation of a method for the analysis of pyrethroid residues in fish using GC–MS. Food Chemistry, 297:124944.
- Food Safety and Inspection Sevice (FSIS), 2018. CLG-PST5.08 Screening for Pesticides by LC/MS/MS and GC/ MS/MS.
- Hernández F, Cervera MI, Portolés T, Beltrán J, Pitarch E, 2013. The role of GC-MS/MS with triple quadrupole in pesticide residue analysis in food and the environment. In Analytical Methods (Vol. 5, Issue 21, pp. 5875–5894). The Royal Society of Chemistry.
- Kang H-S, Lee S-B, Shin D, Jeong J, Hong J-H, et al., 2018. Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control, 85:57-65.
- Kim J, Park H, Kang H-S, Cho B-H, Oh J-H, 2020. Comparison of sample preparation and determination of 60 veterinary drug residues in flatfish using liquid chromatographytandem mass spectrometry. Molecules, 25(5):1206.
- Lehotay SJ, Maštovská K, Yun SJ, 2005. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. Journal of AOAC International, 88(2):630-638.
- Molina-Ruiz JM, Cieslik E, Cieslik I, Walkowska I, 2014. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environmental Science and Pollution Research, 22(1):369-378.
- Munaretto JS, Ferronato G, Ribeiro LC, Martins ML, Adaime MB, et al., 2013. Development of a multiresidue method for the determination of endocrine disrupters in fish fillet using gas chromatography-triple quadrupole tandem mass spec-

trometry. Talanta, 116:827-834.

- Nasiri A, Amirahmadi M, Mousavi Z, Shoeibi S, Khajeamiri A, et al., 2016. A multi residue GC-MS method for determination of 12 pesticides in cucumber. Iranian Journal of Pharmaceutical Research, 15(4):809-816.
- Park H, Kim J, Kang H-S, Cho B-H, Oh J-H, 2020. Multi-Residue analysis of 18 dye residues in animal products by liquid chromatography-tandem mass spectrometry. Journal of Food Hygiene and Safety, 35(2):109-117.
- Perović A, Sobočanec S, Dabelić S, Balog T, Dumić J, 2018. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period. Free Radical Research, 52(2):188-197.
- Raina R, 2011. Chemical Analysis of Pesticides Using GC/MS, GC/MS/MS, and LC/MS/MS. Pesticides-Strategies for Pesticides Analysis. InTech. http://www.intechopen.com (Accessed Oct. 12. 2020).
- Sahu RK, Nelapati K, 2018. Method validation for analysis of 24 pesticides in catla catla fish through gas chromatography triple quadrupole mass spectrometer (GC-MS/MS). Journal of Animal Research, 8(2):217-224.
- Sapozhnikova Y, 2014. Evaluation of low-pressure gas chromatography-tandem mass spectrometry method for the analysis of >140 pesticides in fish. Journal of Agricultural and Food Chemistry, 62(17):3684-3689.
- Sapozhnikova Y, Lehotay SJ, 2013. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic

aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography-tandem mass spectrometry. Analytica Chimica Acta, 758:80-92.

- Shin D, Kang H-S, Jeong J, Kim J, Choe WJ, et al., 2018. Multi-residue determination of veterinary drugs in fishery products using liquid chromatography-tandem mass spectrometry. Food Analytical Methods, 11(6):1815-1831.
- Shin D, Kim J, Kang, H-S, 2021. Simultaneous determination of multi-pesticide residues in fish and shrimp using dispersive-solid phase extraction with liquid chromatography– tandem mass spectrometry. Food Control, 120:107552.
- Stefanelli P, Santilio A, Cataldi L, Dommarco R, 2009. Multiresidue analysis of organochlorine and pyrethroid pesticides in ground beef meat by gas chromatography-mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 44(4):350-356.
- Williams RR, Bell TA, Lightner DV, 1986. Degradation of trifluralin in seawater when used to control larval mycosis in penaeid shrimp culture. Journal of the World Aquaculture Society, 17(1-4):8-12.
- Zhao X, Zhou Y, Kong W, Gong B, Chen D, et al., 2016. Multiresidue analysis of 26 organochlorine pesticides in Alpinia oxyphylla by GC-ECD after solid phase extraction and acid cleanup. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1017-1018, 211-220.